一个平面可以用参数方程这样表示:
{x=x(u,v)y=y(u,v)z=z(u,v)\left\{\begin{aligned}x&=x(u,v)\\y&=y(u,v)\\z&=z(u,v)\end{aligned}\right.⎩⎪⎨⎪⎧xyz=x(u,v)=y(u,v)=z(u,v)
例如球面x2+y2+z2=1x^2+y^2+z^2=1x2+y2+z2=1 用参数方程可表示为
{x=sinϕcosθy=sinϕsinθz=cosϕ\left\{\begin{aligned}x&=sin\phi cos\theta\\y&=sin\phi sin\theta\\z&=cos\phi\end{aligned}\right.⎩⎪⎨⎪⎧xyz=sinϕcosθ=sinϕsinθ=cosϕ
柱面x2+y2=1x^2+y^2=1x2+y2=1用参数方程表示为
{x=cosθy=sinθz=z\left\{\begin{aligned}x&=cos\theta\\y&=sin\theta \\z &= z\end{aligned}\right.⎩⎪⎨⎪⎧xyz=cosθ=sinθ=z
现在给定任意一个用参数方程表示的曲面,如何求取它法向量?
设当u=u0,v=v0u=u_0,v=v_0u=u0,v=v0 时,平面上取点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)。
固定u=u0u=u_0u=u0不变,得到经过点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)的一条曲线:
{x=x(u0,v)y=y(u0,v)z=z(u0,v)\left\{\begin{aligned}x&=x(u_0,v)\\y&=y(u_0,v)\\z&=z(u_0,v)\end{aligned}\right.⎩⎪⎨⎪⎧xyz=x(u0,v)=y(u0,v)=z(u0,v)
显然这条曲线在平面上,它在点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处的切线方向向量为
s1⃗=(∂x∂v,∂y∂v,∂z∂v)\vec{s_1}=(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v})s1=(∂v∂x,∂v∂y,∂v∂z)
同理固定v=v0v=v_0v=v0 不变,得到另一条曲线在点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处切线方向向量为:
s2⃗=(∂x∂u,∂y∂u,∂z∂u)\vec{s_2}=(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u})s2=(∂u∂x,∂u∂y,∂u∂z).
(注:这里的∂x∂v\frac{\partial x}{\partial v}∂v∂x)指的不是偏导函数,而是偏导数在(u0,v0)(u_0,v_0)(u0,v0)点处的取值.
s⃗1,s⃗2\vec s_1,\vec s_2s1,s2所决定的平面就是点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处的切平面。故法向量n⃗=s⃗1×s⃗2\vec n =\vec s_1 \times \vec s_2n=s1×s2.
s1⃗×s2⃗\vec{s_1} \times \vec {s_2}s1×s2
=(xv,yv,zv)×(xu,yu,zu)=(x_v,y_v,z_v) \times (x_u,y_u,z_u)=(xv,yv,zv)×(xu,yu,zu)
=(yvzu−yuzv,xuzv−xvzu,xvyu−xuyv)= (y_vz_u-y_uz_v,x_uz_v-x_vz_u,x_vy_u-x_uy_v)=(yvzu−yuzv,xuzv−xvzu,xvyu−xuyv)
=−(∂(y,z)∂(u,v),∂(z,x)∂(u,v),∂(x,y)∂(u,v))=-(\frac{\partial (y,z)}{\partial(u,v)},\frac{\partial(z,x)}{\partial(u,v)},\frac{\partial (x,y)}{\partial (u,v)})=−(∂(u,v)∂(y,z),∂(u,v)∂(z,x),∂(u,v)∂(x,y))
故向量(∂(y,z)∂(u,v),∂(z,x)∂(u,v),∂(x,y)∂(u,v))(\frac{\partial (y,z)}{\partial(u,v)},\frac{\partial(z,x)}{\partial(u,v)},\frac{\partial (x,y)}{\partial (u,v)})(∂(u,v)∂(y,z),∂(u,v)∂(z,x),∂(u,v)∂(x,y))即为点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处法向量.
(注:这个法向量并不能区分内外侧,具体是内法向量还是外法向量仍需其他判据.)
常见平面的法向量
球面x2+y2+z2=a2x^2+y^2+z^2=a^2x2+y2+z2=a2的参数形式为:
{x=asinϕcosθy=asinϕsinθz=acosϕ\left\{\begin{aligned}x&=asin\phi cos\theta\\y&=asin\phi sin\theta\\z&=acos\phi\end{aligned}\right.⎩⎪⎨⎪⎧xyz=asinϕcosθ=asinϕsinθ=acosϕ
由公式得法向量为(a2sin2ϕcosθ,a2sin2ϕsinθ,a2sinϕcosϕ)(a^2sin^2\phi cos\theta,a^2sin^2\phi sin\theta,a^2sin\phi cos\phi)(a2sin2ϕcosθ,a2sin2ϕsinθ,a2sinϕcosϕ)
=a2sinϕ(sinϕcosθ,sinϕsinθ,cosϕ)=a^2sin\phi(sin\phi cos\theta,sin\phi sin\theta,cos\phi)=a2sinϕ(sinϕcosθ,sinϕsinθ,cosϕ)
柱面x2+y2=a2x^2+y^2=a^2x2+y2=a2的参数形式为:
{x=acosθy=asinθz=z\left\{\begin{aligned}x&=acos\theta\\y&=asin\theta\\z&=z\end{aligned}\right.⎩⎪⎨⎪⎧xyz=acosθ=asinθ=z
由公式得法向量为(acosθ,asinθ,0)(acos\theta,asin\theta,0)(acosθ,asinθ,0)
在第一型曲面积分上的应用
若在第一型曲面积分中积分曲面用参数方程给出,那么该如何计算呢?
取曲面Σ\SigmaΣ面积微元dSdSdS,设点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)在dSdSdS内,且此时u=u0,v=v0u=u_0,v=v_0u=u0,v=v0。dSdSdS的法向量可近似为点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处法向量.
记为n⃗=(∂(y,z)∂(u,v),∂(z,x)∂(u,v),∂(x,y)∂(u,v))\vec{n}=(\frac{\partial(y,z)}{\partial(u,v)},\frac{\partial(z,x)}{\partial(u,v)},\frac{\partial(x,y)}{\partial(u,v)})n=(∂(u,v)∂(y,z),∂(u,v)∂(z,x),∂(u,v)∂(x,y))
将dSdSdS投影到xoyxoyxoy平面,设为dσd\sigmadσ。
所以dσd\sigmadσ的法向量为z⃗=(0,0,1)\vec{z}=(0,0,1)z=(0,0,1)
所以dS=dσcos
所以第一型曲面积分∬Σf(x,y,z)dS=∬Df(x,y,z)(∂(y,z)∂(u,v))2+(∂(z,x)∂(u,v))2+(∂(x,y)∂(u,v))2∂(x,y)∂(u,v)dxdy\iint_{\Sigma}f(x,y,z)dS=\iint_{D}f(x,y,z)\frac{\sqrt{(\frac{\partial(y,z)}{\partial(u,v)})^2+(\frac{\partial(z,x)}{\partial(u,v)})^2+(\frac{\partial(x,y)}{\partial(u,v)})^2}}{\frac{\partial(x,y)}{\partial(u,v)}}dxdy∬Σf(x,y,z)dS=∬Df(x,y,z)∂(u,v)∂(x,y)(∂(u,v)∂(y,z))2+(∂(u,v)∂(z,x))2+(∂(u,v)∂(x,y))2dxdy
再进行一次坐标代换,即被积函数乘以雅可比行列式∂(x,y)∂(u,v)\frac{\partial(x,y)}{\partial(u,v)}∂(u,v)∂(x,y)得到
∬Df(x(u,v),y(u,v),z(u,v))(∂(y,z)∂(u,v))2+(∂(z,x)∂(u,v))2+(∂(x,y)∂(u,v))2dudv\iint_{D}f(x(u,v),y(u,v),z(u,v))\sqrt{(\frac{\partial(y,z)}{\partial(u,v)})^2+(\frac{\partial(z,x)}{\partial(u,v)})^2+(\frac{\partial(x,y)}{\partial(u,v)})^2}dudv∬Df(x(u,v),y(u,v),z(u,v))(∂(u,v)∂(y,z))2+(∂(u,v)∂(z,x))2+(∂(u,v)∂(x,y))2dudv
这样对于任意用参数方程给出的曲面的第一型曲面积分我们就可以化为对u,vu,vu,v的一个二重积分了。
若有错误或意见欢迎给出资料出处,理性讨论,觉得还不错的话请点个赞,谢谢大家。
本文作于5月30日,知乎ID同名,其他平台均非作者本人.
入手再无压力 南京电信iPhone烧号机特价
美博空调质量怎么样啊费电吗